Multi-features taxi destination prediction with frequency domain processing

نویسندگان

  • Lei Zhang
  • Guoxing Zhang
  • Zhizheng Liang
  • Ekene Frank Ozioko
چکیده

The traditional taxi prediction methods model the taxi trajectory as a sequence of spatial points. It cannot represent two-dimensional spatial relationships between trajectory points. Therefore, many methods transform the taxi GPS trajectory into a two-dimensional image, and express the spatial correlations by trajectory image. However, the trajectory image may have noise and sparsity according to trajectory data characteristics. So, we import image frequency domain processing to taxi destination prediction to reduce noise and sparsity, then propose multi-features taxi destination prediction with frequency domain processing (MTDP-FD) method. Firstly, we transform the spatial domain trajectory image into frequency-domain representation by fast Fourier transform and reduce the noise of the trajectory images. Convolutional Neural Network (CNN) is adapted to extract the deep features from the processed trajectory image as CNN has a significant learning ability to images. Recurrent Neural Network (RNN) is adapted to predict the taxi destination as multiple hidden layers of RNN can store dependencies between input data to achieve better prediction. The deep features of the trajectory images are combined with trajectory metadata, trajectory data to act as the input to RNN. The experiments based on the taxi trajectory dataset of Porto show that the average distance error of MTDP-FD is reduced by 0.14km compared with the existing methods, and the GTOHL is the best combination of data and features to improve the prediction accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Neural Networks Applied to Taxi Destination Prediction

We describe our first-place solution to the ECML/PKDD discovery challenge on taxi destination prediction. The task consisted in predicting the destination of a taxi based on the beginning of its trajectory, represented as a variable-length sequence of GPS points, and diverse associated meta-information, such as the departure time, the driver id and client information. Contrary to most published...

متن کامل

On Learning from Taxi GPS Traces (Preamble)

Electronic taxi dispatch systems are in wide use today. These systems have replaced the traditional VHF-radio dispatch by installing mobile data terminals in taxis, which typically provide GPS localization information and taximeter state. In the last couple of years, the broadcast-based radio messages for service dispatching were replaced by unicast-based messages between the taxi central and t...

متن کامل

T-CONV: A Convolutional Neural Network For Multi-scale Taxi Trajectory Prediction

Precise destination prediction of taxi trajectories can benefit many intelligent location based services such as accurate ad for passengers. Traditional prediction approaches, which treat trajectories as one-dimensional sequences and process them in single scale, fail to capture the diverse two-dimensional patterns of trajectories in different spatial scales. In this paper, we propose TCONV whi...

متن کامل

(Blue) Taxi Destination and Trip Time Prediction from Partial Trajectories

Real-time estimation of destination and travel time for taxis is of great importance for existing electronic dispatch systems. We present an approach based on trip matching and ensemble learning, in which we leverage the patterns observed in a dataset of roughly 1.7 million taxi journeys to predict the corresponding final destination and travel time for ongoing taxi trips, as a solution for the...

متن کامل

Prediction of dispersed mineralization zone in depth using frequency domain of surface geochemical data

Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This new exploratory information can be achieved using the interpretation of FD of geochemical data, which is impossible in spatial domain. In this research work, FD of the surface geochem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018